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Abstract

Snce the introduction of the two-level dynamic branch
prediction scheme, research into branch prediction has foll owed
two different paths. Thefirst attempted to improve prediction by
reducing aliasing in the second level table, which was shown to
adversely effect prediction rate. The second attempted to
improve prediction rate by combining two or more different com-
ponents in the branch prediction structure. The assumption was
that one component of the hybrid predictor better predicts a cer-
tain set of branches, while the second component better predicts
a separate set of branches. Most papers proposing an aliasing
reduction technique do not compare their new structure with a
hybrid one, and vise versa. Hybrid branch predictors added the
extra complication of the selection mechanism. Sudies have
shown the value of incorporating a static and a dynamic selec-
tion mechanisminto the hybrid predictor, but have failed to iden-
tify the underlying reasons for their performance.

We present a study that consolidates the hybrid and alias-
ing research paths by showing that most of the advantage in
combining branch prediction is gained by the selection mecha-
nism ability to reduce aliasing. The study also shows the inabil-
ity of a selection mechanism to capture the branches changing
best predictor during the programs execution (if such behavior
exists). Subsequently, we show that a dynamic and a properly
profiled static sel ection mechanism work well for the same rea-
sons: reducing aliasing. We then highlight the advantages and
disadvantages of static and dynamic selection mechanisms. The
conclusion that aliasing reduction is paramount to prediction
accuracy, and the observation that aliasing still degrades per-
formance for large resource allocation, despite numerous alias-
ing-reducing structure, lead to the need for further
improvements.

K eywords: Branch Prediction, Hybrid predictor, Alias-
ing, Selection Mechanism

1. INTRODUCTION

Large improvements in underlying chip technology have
made available an increasing number of transistors to the
microarchitect. In order to improve chips performance, design-
ers have employed instruction level parallelism (ILP) to fetch
and execute multiple instructions per cycle. One of the most
conspicuous bottlenecks clogging those wide-issue, deeply pipe-
lined processorsis the difficulty of predicting where the instruc-
tion stream will go next. It isargued that by the year 2010 branch
prediction will become the most limiting factor in processor per-
formance, surpassing even the limitation of memory system [1].
Those findings assumed generous resources, implying that sim-
ply increasing the size of the predictor will not solve the prob-
lem.

The introduction of the two-level adaptive branch predic-

tion [2] resulted in considerable research activity. Different vari-
ations of the two-level adaptive branch prediction were
introduced [3]. These are the global variation, which has one
history register in thefirst level shared by all branches, and the
local variation, which idealy has a history register per branch,
but in reality has a set of branches sharing the same history regis-
ter. It was observed that each of these two-level schemes, and
earlier schemes such as the bimodal predictor [4][5] hasits
unique advantages. This led to the idea of combining branch pre-
dictors[6]. The main notion isthat one set of branchesiis better
predicted by scheme A, while adifferent set of branches is better
predicted by branch prediction scheme B. When it istrue, we
will refer to it as true hybrid behavior. In such cases, it may be
beneficia to combine the two schemesin a hybrid predictor and
let each set of branches be predicted by the branch prediction
scheme that predicts it most accurately. We will cal thisline of
study the ‘hybrid path.’

It was observed that aliasing in the second level of the
two-level branch prediction structures can cause considerable
degradation in prediction in two-level branch prediction struc-
tures[7][8]. Thisled to the development of numerous branch
prediction structures that attempted to reduce the adverse effect
of aliasing, particularly in the global two-level branch prediction
schemes. We will call thisline of study the ‘diasing path.’

This paper will show that most of the gains achieved in
hybrid predictor are due to the ability of the selection mechanism
to reduce aliasing, not to true hybrid behavior. It followsthat
hybrid predictors should be compared to aliasing reducing struc-
tures and vise versa, because they both achieve their goals by
attacking the same problem. We further observe that true hybrid
behavior is due to alimited number of branches, and that both
dynamic and properly profiled static selection mechanisms map
those branches into their respective best component (the differ-
ent predictors that make up the hybrid predictor). Moreover, we
show that both dynamic and static selection mechanisms achieve
the same goal's, namely, reducing aliasing, in different ways. We
also show that the advantages of dynamic selection mechanisms
can be applied to static selection mechanisms by a profiling
method. We conclude by comparing awell-known aliasing
reducing predictor with a hybrid implementation.

The paper is organized asfollows: Section 2, surveys
related work highlighting respective strengths and weaknesses.
In section 3 we explain the simulation methodology used in this
paper. Section 4 offers a comprehensive study, which demon-
stratesin detail the points above. Finaly, in section 5 we pro-
vide some concluding remarks.

2. PREVIOUSWORK
2.1. Reducing Aliasing
Aliasing is the phenomenon of two unrelated pieces of
information sharing the same entry in atable, usually as aresult
of resource limitations. The lack of atag in the table hides the
source of theinformation, and asaresult thisinformation is used
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regardless of its validity. This phenomenon usually degrades
prediction. Structures, which reduce aliasing, can be grouped by
the underlying method they use. We identified three such meth-
ods: reducing destructive aliasing [9][17][11], filtering [12][11],
and utilizing associativity [14][11].

While the different aliasing reducing structures have been
compared to one ancther in the literature, there has been no com-
parison with hybrid branch predictors.

2.2. Hybrid Predictors

The question whether the advantages of different schemes
can be combined has been discussed [6]. That author then pro-
poses the bimodal -gshare and local -gshare hybrid mechanisms.
The bimodal-gshare hybrid predictor outperforms gshare, and
the author hints that filtering may be the reason. Thelocal-
gshare hybrid predictor predicts better than the bimodal-gshare
for predictors larger than 16KB.

Classifying branches into sets with similar bias behavior
was suggested in work on branch classification [9]. Different
sets of branches are predicted by different predictors. Specifi-
cally, highly biased branches are predicted with a short history,
while less biased branches are predicted with along history.
Selecting the hybrid component is determined by profiling. In
[9], astatic-local-global predictor was also presented. The selec-
tion of whether to use the static component was determined by
profiling, while a bimodal selection mechanism was used to
choose between the local and global components. This structure
improved on the prediction of the global-locd hybrid structure.

Although filtering was explicitly mentioned in some of the
hybrid predictors, they were not presented as a method to reduce
aliasing. While most hybrid studies compared their results with
the gshare structure, they do not compare themselves to amore
sophisticated aliasing reducing structure.

2.3. Selection Mechanisms

Thefirst hybrid structure [6] used an array of 2-bit saturat-
ing counters indexed by the branch address as the selection
mechanism. The counter isincrement or decrement depending
on which one of the hybrid's components gave the correct pre-
diction; it is not updated if both components gave the same pre-
diction (either correct or incorrect). It was proposed that using a
global two-level scheme as the selection mechanism might
improve prediction [10]. A static selection mechanism using
profiling was compared with a dynamic selection mechanism in
[15]. Although profiling for selection mechanisms was investi-
gated beforein [9], the authorsin [15] use an improved profiling
method to achieve better prediction for the local-gshare hybrid
predictor. Two reasons were credited for the improvement.
First, using a static selection mechanism doesn’t require hard-
ware resources for the sel ection mechanism, freeing hardware
for use in the hybrid components. Second, only one component
needs to be updated, because each branch uses only one compo-
nent. This reduces contention in the second level structures.

3. SSMULATION METHODOLOGY

Performance of each hybrid configuration was measured
by trace-driven simulations performed on the SPECint95 bench-
marks, the PowerPC and S390 benchmarks. The SPECint95
traces were obtained by running SimpleScalar’s bpred program
[18] and extracting the branch address, target address, and
branch outcome. The S390 and PowerPC traces were provided
by IBM. IBM provided no further information about the traces,
but their distinguishing characteristic is alarge number of

branches. This promotes aliasing, which considerably degrade
prediction for these benchmarks. Table 1 displays the number of
static branches for the different benchmarks.

static branches

real train
SPECint95
gce 13763 14085
compress 495 704
go 7401 7749
ipeg 2760 2854
li 1701 1457
m88ksim 1646 2199
perl 3443 2721
vortex 7581 11132
IBM Traces
s390 21727 N/A
powerPC 16710 N/A

Table 1: tracesused in smulations

In all the smulations performed in our studies, the depth
of correlation (the size of the history register/s) follows directly
from the size of the PHT. For example, if the global component
in the hybrid predictor had 1K entriesin its PHT, the history reg-
ister size will be 10 bits. We used the McFarling local-gshare
hybrid predictor because in preliminary simulationsit exhibited
the best true hybrid behavior. The McFarling predictor was used
exactly as described in [6].

In simulations with areal structure (limited to different
sizes), we used atwo way set associative BTB with 4K entries.
Thisislarge enough to prevent it from being a performance bot-
tleneck and enables us to concentrate on the tradeoffs in the
PHTSs.

All hybrid predictors simulated had two components, a
gshare structure implementing the global branch prediction
scheme, and a PAs structure implementing the local branch pre-
diction scheme. In cases where adynamic selection mechanism
was employed, the bimodal structure was used.

Profiling was done on the same data sets that were used for
simulation, unless stated otherwise. This enabled usto obtain an
upper limit on the prediction accuracy. Itisexpected that using a
different data set (the more realistic situation) for profiling will
degrade the performance of the hybrid predictor with a static
selection mechanism, as one of the studies in the paper shows.

Throughout the discussion, we present only four graphs
due to lack of space: the arithmetic average of the SPECint95,
the gec benchmark from the SPECint95 suite, the PowerPC
benchmark, and the S390 benchmark. The gcc benchmark is
presented because it isrelatively hard to predict compared to the
other SPECint95 programs. The PowerPC and S390 are pre-
sented because of their large number of branches. When the
SPECint95 average is not applicable, we present the results of
the go benchmark instead. Simulations were conducted for all
other SPEC95 benchmarks, and the results were similar.
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Figure 1- Testing the potential of static vs. dynamic selection mechanismsin a unlimited resour ce

environment

4. EXPERIMENTAL RESULTS
4.1. Satic vs. Dynamic Selection M echanism

We begin by examining therel ative merits of using a static
versus a dynamic selection mechanism to choose between the
different components of a hybrid predictor. Asnoted earlier, a
static selection mechanism requireslessinformation to be stored
in the predictor structure, because each branch utilizes only one
component. Thisreduces contention, which reducesaliasing and
helps the prediction rate. Moreover, hardware resources that
would have been used for the selection mechanism are now
available for increasing the size of the predictor’s components.
The main problem with static selection is the additional bits
needed in the ISA. Although some ISAs have this bit in place,
otherswill require that the ISA be altered. Dynamic selection
mechanisms are claimed to have an edge over static ones,
because it has been suggested that the best component for pre-
dicting a branch can change during the execution of a program.

It isunclear, however, whether there is an inherent benefit
in choosing the component used by a specific branch dynami-
caly. If the best component to predict a branch is dynamically
changing during the program run, it will be beneficial to dynam-
ically select the component used by a branch. However, if there
is no inherent benefit in choosing the component used by a
branch dynamically, it is beneficial to choose it statically and
avoid the extra cost of using both components for each branch,
and the cost of the selection mechanism.

Figure 1 shows the prediction accuracy for an unlimited
resources global-local hybrid predictor. The three plots repre-
sent three types of selection mechanisms: per-branch oracle, per-
instance oracle, and an implementation of area selection mech-
anism — the bimodal. The per-branch oracle records the predic-
tion rate for both components and when the program terminates,

it chooses the best component as the predictor for each branch.
The per instance oracle get a prediction from both components,
and if any of them is correct, it records a correct prediction.
(Notice that the per-instance oracle is an overestimation and
even for arandomly generated prediction, probability dictates a
75% correct prediction.) Determining whether the best compo-
nent to predict a branch changes during program execution is
difficult. One approach isto slice the dynamic stream of a spe-
cific branch into n subsets of branch instances, and then to
choose the best component for each set [16]. The problemisthat
asmall nleads to an optimistic outcome, while alarge n might
erase the benefit of having a dynamic selection mechanism.
Using either large n or small n can lead to the erroneous conclu-
sions. Clearly, it does not matter whether the best component for
each branch changes throughout the program run if aknown

sel ection mechanism cannot identify the best component dynam-
ically. Inour experiments we used an unbounded hybrid predic-
tor with an unbounded bimodal selection mechanism. This
eliminated the adverse effect of aliasing and allows a check on
whether the bimodal selection mechanism can capture the
changing best predictor throughout the program execution. Fig-
ure 1 shows that there is no inherent gain in using a dynamic
selection mechanism. In other words, if thereisagain to be
made in changing the component used for each branch during
the program execution, the bimodal sel ection mechanism does

not capture itl. Thisis made clear in the graphswhere it can be
seen that the bimodal selection mechanism always under-per-

forms the per branch oracle. Moreover, it appears that the bimo-
dal selection mechanism makes mistakes in selecting the proper

1.  Theglobal selection mechanism was considered as
well, but provided similar results.



component, which degrades the overall performance. This phe-
nomenon is accentuated in programs with a large number of
branches like the S390 and PowerPC. They display asignificant
gap between the prediction of the oracle static selection mecha
nism and the prediction when using the bimodal selection mech-
anism.

Figure 1 depicts the inability of the dynamic selection
mechanism to dynamically adapt to the changing behavior of
branches, even if such atransient behavior exists. Therefore,
there does not appear to be an advantage to employing dynamic
sel ection mechanisms instead of static ones. We would thus
expect that in alimited resource setting a static selection mecha-
nism will outperform a dynamic selection mechanism for the
reasons mentioned above (less aliasing and more resources dedi-
cated to the prediction components). Figure 2, however, shows
the exact opposite. In alimited resources setting, the hybrid pre-
dictor with a dynamic selection mechanism (dynamic) outper-
forms ahybrid with a perfect static selection mechanism (static).
The other plots (static limited and static unlimited) will be dis-
cussed later and can be ignored for moment.

Holding the hedl of this observation a question is born:
What isit about the dynamic sel ection mechanism that boosts
the performance of a hybrid predictor with a dynamic selection
mechanism when working in a size-restricted structure? Alterna-
tively, what is it about the static selection mechanism that in a
limited-resource setting degrades the performance of a hybrid
predictor?

One possible hypothesisis that a dynamic selection mech-
anism reduces dliasing. For example, consider the case where
two branches A and B are both better predicted by the global
component of the hybrid predictor. In an unlimited resource set-
ting, a dynamic selection mechanism will choose the global
component to predict them. In aresource limited setting, branch
Awill suffer from aliasing, which considerably degrades the pre-
diction of its global component. As aresult, the dynamic selec-
tion mechanism chooses the local component to predict branch
A's outcomes. Although both branches A and B are inherently
better predicted by a global component, branch A will be better
predicted by the local component in alimited resources environ-
ment. We next examine how much aliasing reduction helps a
hybrid predictor.

4.2. Aliasing Reduction in Hybrid Predictors

Figure 3 showsthe extent to which reducing aliasing helps
boost the performance of hybrid prediction. It comparesa
resource bound local-global hybrid predictor (hybrid), with a
resource bound local-global hybrid (aliasing hybrid), where the
sel ection mechanism doesn’t take into consi deration the effect of
aliasing. To simulate this effect, arun of the local-global hybrid
predictor was made with no limits on resources. The selection
pattern for the entire run was logged and later served as the
selection mechanism in the limited hybrid version. The selec-
tion mechanism in this caseis that for the true hybrid behavior
with no regards to aliasing, since it was recorded in an aliasing
free setting. From figure 3, we conclude that alarge portion of
the benefits brought by hybrid predictorswith dynamic selection
mechanism come from reducing aliasing. Moreover, comparing
the hybrid predictor to an unlimited version of the global scheme
(UL global), shows that the local-global hybrid predictor never
fulfilsits promise of improving prediction beyond that of asin-
gle scheme, even for generous resource allocation. Notice that
the different between UL Hybrid and UL global is the potential

difference between the hybrid predictor (global-local) and the
global scheme. Thisdifference palesin comparison to the differ-
ence between UL global and hybrid that represents the remain-
ing aliasing after the bimodal selection mechanism was able to
reduce some of them (the difference between hybrid and alias-
ing-hybrid).

4.3. Prediction Potential of a Hybrid Sructure

Next we investigated whether thereis an inherent gainin
the local-global hybrid predictor over a single scheme, or
whether the gain realized by the hybrid predictor is limited to
reducing aliasing rather than to true hybrid behavior. Figure 4
shows the improvement of the program’s prediction for each
branch (x-axis) when using the local predictor versus the global
predictor with no limits on resources. Positive percentages indi-
cate the branch is better predicted by the local scheme, while
negative percentages indicate the branch is better predicted by
the globa scheme. The branches are sorted on the x-axis
according to the percentage improvement. Figure 4 shows that
the number of branches that contribute to the true hybrid behav-
ior of the local-global hybrid predictor is small. Here and after,
these small number of branches will be reffered to as the hybrid
branches. For most branches the improvement obtained by
using the global component instead of the local component or
viceversaisinsignificant. Only afew branches (the hybrid
branches) are responsible for the improvement of alocal-global
hybrid predictor over a single scheme predictor. If the predictor
component for the other branches (the majority) changes dynam-
ically to reduce aliasing, it remains to make sure that the hybrid
branches are predicted by the component that does it best. This
will alow to take advantage of both alias reduction and true
hybrid behavior. When employing a static selection mechanism,
this can be done at profile time. In the case of adynamic selec-
tion mechanism it seems that an explicit way of indicating the
appropriate component for the hybrid branches is needed. How-
ever, in a study we conducted, it was shown that the dynamic
selection mechanism is aready performing that task of mapping
the hybrid branches into their respective best component.
Attempting to lock the hybrid branchesinto their respective best
component, while letting the rest of the branches component to
be chosen dynamically, resulted in degraded performance.

Despite the potential embedded in hybrid predictors, and
the ability to the selection mechanism to identify the hybrid
branches, this potential is not fulfilled. Performance degradation
due to aliasing dominates the hybrid potential that as aresult is
never fulfilled.

4.4. Aliasng Aware Static Selection M echanism

At this point we have shown that both static and dynamic
selection mechanisms reduce aliasing in hybrid branch predic-
tors. The former by reducing contention in the structure (updat-
ing only one component) and eliminating the hardware cost in
the sel ection mechanism, and the later by dynamically distribut-
ing the branch stream across the two components while alleviat-
ing contention in the PHT. Dynamic sel ection mechanism
performs much better than an ideal static selection mechanism.
In theidea static selection mechanism, profiling was done with
no limitation on resources. Thisled to branches better predicted
by the globa scheme to be mapped to the gshare component, and
branches better predicted by the local scheme, to be mapped to
the PAs component. Notice that the idea static selection mecha
nism does not take aliasing into consideration. One way of
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achieving thisisto take the actud table size into consideration
while profiling. Figure 2 shows the importance of taking into
consideration the size of the predictor structure when profiling.
When taking size into consideration during profiling, the
branches are distributed not just by their true hybrid behavior,
but also by taking aliasing into consideration. Figure 2 shows
that while dynamic selection mechanism is better than a static
sel ection mechanism with perfect profiling, employing profiling
that takes the size of the structure into consideration (static lim-
ited) resultsin even better performance than dynamic selection.
The fact that the difference between the prediction percentages
diminisheswith sizeindicatesthat the differenceismostly dueto
better aliasing reduction. Using this profiling method combines
the advantage of static and dynamic selection mechanisms aswe
explained before.

The advantages of using a static selection mechanism with
aliasing bound profiling are as follows: 1) The branches are dis-
tributed amongst the component according to contention in the
structure. 2) The selection hardware is eliminated. 3) Only one
component is used per branch, which further reduces contention.
The question arises whether such good prediction can be
achieved when profiling from atest data set. Asfigure 2 shows,
when using a different data set to profile the program the static
selection mechanism (static limited test) suffers degradation in
performance. For small predictors the static sel ection mecha
nism still performs better than the dynamic selection mecha-
nism, but the dynamic sel ection mechanism eventually surpasses
it.

45. Comparing Hybrid and Aliasing-Reducing Structure

Finally, after discovering that the main strength of hybrid
predictorsis reducing aliasing, we made a direct comparison
between one of the most used aliasing reduction implementa-
tions, the bi-mode predictor, and the McFarling hybrid predictor
(figure 5). If the size of the local history registersisignored
(McFarling), the McFarling predictor does better than the bi-
mode predictor for small size predictors, while the bi-mode pre-
dictor performance catch up for larger predictors and eventually
surpasses the M cFarling predictor. This phenomenon is accentu-
ated for traces with alarge branch signature like the S390 and
the PowerPC. For the PowerPC trace, predictors larger than 1K
bytes should use the bi-mode structure. Thisis aso true for the
SPECFP traces (not shown). When taking the size of the local
history registersinto account (McFarling adjusted), the M cFar-
ling predictor performs poorly. However, it should be noted that
the BTB used in the simulations was large to prevent it from
being abottleneck. We hypothesize that much smaller BTB (and
therefore smaller sizelocal history registers) can be used without
compromising performance. However, factors like ease of
implementation and smaller access time further the favors a bi-
mode implementation.

It would be acceptable if the hybrid predictor produced
poor prediction compared to the bi-mode predictor for smaller
size predictors. The hybrid scheme produces more information
than the global scheme (sinceit implements both the global and
local scheme), and results in more aliasing, which degrades per-
formance. Conversely, the fact that for larger predictors the bi-
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mode predictor outperforms the McFarling predictor further
proves that current implementation of the hybrid predictor are
not capable of taking advantage of the hybrid scheme’s potential.

Assuming that combining the two paths of research, and
reaping. the benefits of each, is easy, is partially to blame for the
misunderstanding of the hybrid path. In our pursuit of integra-
tion between hybrid structures and aliasing-reducing structures,
we experimented with a M cFarling hybrid predictor where each
of its component is a bi-mode predictor. The expectation was
that this would gain from both true hybrid behavior and reduce
aliasing. In fact the oracle selection mechanism with these pre-
dictorsfailed to achieve this, and the best predictor was the ver-
sion with the profiling obtained by simulating the structure size.
Once again, the benefit of reducing aliasing overwhelms the
benefits of the hybrid scheme.

5. SUMMARY

We have shown that the major contribution of hybrid pre-
dictorsto enhance prediction is their ability to reduce aliasing.
In a sense the true hybrid behavior isinsignificant. Therefore,
studies that work on structures to reduce aiasing should be com-
pared to known hybrid predictors and vise versa. We also
refuted the belief that dynamic sel ection mechanisms can cap-
ture the branch’s changing behavior. Instead we showed that the
dynamic selection mechanism works well because of its ability
to serve as aload balancer to reduce aliasing. This can be
achieved with static sel ection mechanism as well if proper pro-
filing is done. Different data sets, however, degrade a static
selection mechanism’s performance. For smaller predictors the
static selection mechanism performed best, while for larger pre-
dictors the dynamic selection mechanism has an edge.

Since every aspect of improvement in prediction accuracy

weinvestigated turned out to be due to aliasing reducti on?, we

urge future studies to consider that and perform appropriate limit
studies to confirm that this is not the case with new structures/
schemes. The consolidation of the different research paths and
the fact that aliasing still degrades performance, even for large
resource all ocation, should lead to further study of predictors
that reduce aliasing. Current branch predictors are not able to
take advantage of the potential in the hybrid scheme. Future pre-
dictors, however, should investigate ways to do so.
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